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Mechanochemical synthesis of La1−xSrxFe3−y (0 ≤ x ≤ 1) perovskites was carried out from
simple oxides. Undoped lanthanum ferrite samples calcined at 900 and 1100◦C for 4 h are
nearly single-phase systems, while some substituted ones (samples with 0.3 ≤ x ≤ 0.8
calcined at 900◦C and samples with x = 0.3, x = 0.4 and x = 0.8 calcined at 1100◦C) are
two-phase systems consisting of orthorhombic perovskite La1−xSrxFeO3−y (A) and cubic or
tetragonal perovskite SrzLa1−zFeO3−y (B) phases. In CO and CH4 oxidation processes, the
specific catalytic activity (SCA) of samples calcined at 1100◦C varies non-monotonously
with the Sr content. In CO oxidation, SCA reaches a maximum in the range of La
substitution by Sr where phase transition occurs and samples are comprised of two
coexisting phases (x = 0.3 and 0.8). In CH4 oxidation, SCA decreases with the Sr content.
C© 2004 Kluwer Academic Publishers

1. Introduction
Recently, substituted perovskites La1−x Srx MO3−y (M
= 3d elements) have attracted much attention because
of their high electronic/ionic conductivity and good cat-
alytic performance in deep oxidation processes [1, 2].
Besides, perovskite-type oxides are applied as chem-
ical sensors, electrodes in high temperature fuel cells
etc. [3]. This requires development of new inexpensive
and wasteless methods of dispersed perovskites synthe-
sis. Mechanochemical activation of the mixture of solid
reagents followed by annealing in mild conditions (MA
route) was recently shown to meet such demands [4].
Since the phase/surface composition and real (defect)
structure of complex perovskites are known to depend
on the preparation route [5–7], detailed investigation of
the properties of La1−x Srx FeO3−y system prepared by
the MA route was carried out in this study.

2. Experimental
La1−x Srx FeO3−y samples were prepared from simple
oxides (‘chem. pure’ La2O3, SrCO3, Fe2O3) by us-
ing preliminary mechanical treatment (MT) of the sto-
ichiometric mixture of starting compounds in the high-
energy planetary ball mills APF-5 [8]. The ratio of the
weights of milling balls and oxides powder was equal to
10:1, acceleration (achieved in the drums of the mills)
∼40 g. MT time was 3 min. After MT procedure, the
powders were annealed at 900 or 1100◦C for 4 h on air.

XRD patterns were obtained with a URD-6 diffrac-
tometer (Germany) using Cu-Kα radiation (λ =
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1.5418 Å). The scanning region 2θ was equal to 20–
90◦ with step = 0.05◦. The experimental data analysis
was carried out by APX-63 and ORIGIN-6.0 programs.
Precise estimation of the unit cell parameters were car-
ried out by the least-squares method (Program “Poly-
crystall” [9]) using 8–10 diffraction peaks. The particle
sizes and microstrain densities were calculated by the
approximation method using Williamson-Hall [10].

The specific surface area (Ssp, m2/g) was determined
by the BET method using Ar thermal desorbtion data.

The method of the differential phase dissolving
(MDPD) was used to determine the phase composi-
tion (including amorphous phases, phases in amount
<5%) and to analyse the cation ratio in the synthesis
products [11]. Samples were dissolved in hydrochlo-
ric acid solution with concentration ranging from 1 to
10 N, while the temperature was increased from 20
to 100◦C, solution analysis being carried out with the
help of the atomic absorption spectroscopy (a BAIRD
spectrometer).

The specific catalytic activity (SCA) in the CO ox-
idation process was determined at 300–500◦C in the
batch-flow installation equipped with the gas chromato-
graphic analysis of reaction mixture components. Sam-
ple weight was 1 g, particle size was 0.5–1 mm, gas
circulation velocity was 1200 l/h, feed rate (1% CO +
1% O2 in He) was 10 l/h. Before the activity measure-
ments, samples were pretreated in the O2 flow at 400◦C
for 2 h.

The SCA in the reaction of CH4 oxidation was de-
termined at 350–600◦C for samples with the particle
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size 0.5–1 mm and weight 1 g in the flow installation
equipped with the gas chromatographic analysis. The
reaction mixture (0.5% CH4 + 9% O2 in He) feed rate
was 2.4 l/h.

3. Results and discussion
3.1. Phase composition
Time and temperature of calcination were found to be
one of the main factors determining the phase composi-
tion of samples. Here the effect of the calcination tem-
perature will be considered for the samples prepared by
MA route.

For pure lanthanum ferrite and strontium ferrite sys-
tems, MT permits to substantially decrease the time of
synthesis. So, according to MDPD and XRD data, the
samples with compositions x = 0 and x = 1 calcined
at 900 and 1100◦C are nearly single-phase systems con-
sisting of orthorhombic perovskite LaFeO3 and tetrag-
onal perovskite SrFeO3−y , with the amount of prod-
uct around 81–83% and 92–98%, respectively (Table I,
Fig. 1).

According to XRD data (Fig. 2a), samples with x =
0.3–0.7 calcined at 900◦C consist of two perovskite-
like phases: orthorhombic perovskite La1−x Srx FeO3−y

(A) and cubic perovskite SrzLa1−zFeO3−y (B) phases.
Similarly, in samples with x = 0.3–0.8, MPDD exper-
iments also revealed the presence of two perovskite
phases (differing by the Sr content, Table I).

T ABL E I Overall cation stoichiometry, phase composition and stoichiometry of La1−x Srx FeO3−y samples according to MDPD data

Sample nominal composition Total cation stoichiometry Phase composition (cation ratio) Phase composition (cation ratio)
(Ssp, m2/g calcined at 1100◦C) in the samples for samples calcined at 900◦C for samples calcined at 1100◦C

LaFeO3 La0.97Fe1 La1Fe1—82.5 La0.94Fe1—98.1
(1.4) Fe—0.5 Fe—0.8

La—17.0 La—1.1
La0.8Sr0.2FeO2.9 La0.78Sr0.22Fe1 La0.82Sr0.1Fe1—95∗ La0.75Sr0.13Fe1—90.6
(3.1) Fe—0.2 Fe—6.8

La—3.3 Sr—2.1
La0.7Sr0.3FeO2.85 La0.68Sr0.32Fe1 La0.81Sr0.14Fe1—86.4∗ La0.75Sr0.13Fe1—82.0
(2.6) Sr1Fe1—6.5 Sr1Fe1—9.0

Fe—0.1 Fe—8.1
La—1.4 La—0.1
Sr—5.6 Sr—0.8

La0.6Sr0.4FeO2.8 La0.57Sr0.39Fe1 La0.75Sr0.13Fe1—78 La0.95Fe1—11.8
(1.8) Sr1Fe1—17.1 La0.58Sr0.48Fe1—85.1

La—0.9 Fe—0.9
Sr—3.0 Sr—1.8

La0.4Sr0.6FeO2.7 La0.39Sr0.55Fe1 La0.52Sr0.14Fe1—69.7∗
(1.3) Sr1Fe1—17.6 La0.42Sr0.51Fe1—95.9

Fe—1.2 Fe—1.1
La—1.0 La—0.5
Sr—10.5 Sr—2.5

La0.3Sr0.7FeO2.65 La0.29Sr0.66Fe1 La0.32Sr0.25Fe1—68.3
(0.5) Sr1Fe1—16.2 La0.31Sr0.65Fe1—95.4

Fe—1.0 Fe—1.5
La—3.4 La—2.1
Sr—11.1 Sr—1.0

La0.2Sr0.8FeO2.6 La0.20Sr0.75Fe1 La0.32Sr0.25Fe1—47.7 La0.23Sr0.76Fe1—83
(0.9) Sr1Fe1—38 Sr1Fe1—13.2

Fe—4,4 Fe—5.9
Sr—9.8 Sr—2.3

SrFeO3−x Sr0.9Fe1 SrFe—81.5 Sr0.9Fe1—92.2
(0.1) Fe—12.8 Fe—3.8

Sr—4.9 Sr—3.3

∗Composites with variable surface/bulk composition.

After calcination at 1100◦C, as judged by XRD
data (Fig. 1, Fig. 2b), only samples with x = 0.3 and
x = 0.4 are comprised from A and B phases. The
same feature was revealed by MDPD for the sam-
ple with x = 0.8 as well. Hence, the specificity of
the MT synthesis route is in the formation of two-
phase samples, while other preparation methods (ce-
ramic [12], auto-combustion [13], alkaline coprecip-
itation [14]) are reported to give single-phase solid
solutions La1−x Srx FeO3−y for all composition range
0 < x < 1. However, it is to be noted that a detailed
investigation [15] of La1−x Srx FeO3−y system prepared
by ceramic route also revealed the complex phase com-
position of samples with x = 0.3, 0.4, 0.8, 0.9, 1.0
depending on the conditions of synthesis (calcination
temperature, oxygen pressure, quenching regimes etc.).

The analysis of the unit cell parameters dependence
on the calcination temperature revealed that the phase A
is a solid solution with the variable composition (Fig. 2).
The solubility of Sr in this phase calcined at 900◦C
reaches the saturation for x = 0.6 and 0.7, while for
samples calcined at 1100◦C this occurs at x = 0.4. The
cell parameter of the phase A is practically indepen-
dent upon the calcination temperature, while that of the
phase B varies with the temperature (Fig. 2a). In order
to precise the unit cell parameter of A and B phases
additional annealing at T = 1200◦C for 10 h of the
samples La1−x Srx FeO3−y calcined at 1100◦C was car-
ried out. It is to be noted that cell parameters for phase

5518



MECHANOCHEMISTRY AND MECHANICAL ALLOYING 2003

Figure 1 X-ray diffraction patterns of La1−x Srx FeO3−y samples calcined at 1100◦C for 4 h.

Figure 2 The lattice parameter a (in Å) of La1−x Srx FeO3−y samples versus Sr content (x); (a) - samples calcined at 900 and 1100◦C; (b) - Samples
calcined at 1100 and 1200◦C.

A and B continue to change even for samples calcined
at 1200◦C (Fig. 2b), especially for x = 0.3 (phase A)
and x = 0.4 (phase B). Since parameter variations were
most noticeable for the samples x = 0.3 and x = 0.4,
morphotropic phase transition could be suggested at
the region x = 0.3–0.4, and its appearance could cause
the formation of the specific microstructure of samples
(microheterogeneity, for instance).

In order to determine the samples microstructural pa-
rameters, the broadening of the XRD peaks was thor-
oughly studied. The narrow X-ray diffraction peaks of
samples with x = 0 and x = 1 imply that they are
comprised of big well crystallized particles free of mi-
crostrains with typical sizes exceeding 1500 Å. For
intermediate samples of the La1−x Srx FeO3−y system
calcined at 900 and 1100◦C, the prominent broadening
of the XRD peaks was observed, but correct estima-
tion of particle sizes for two-phase samples is compli-
cated by overlapping of peaks corresponding to A and
B phases. Hence, particle sizes (D) and microstrains
density (�d/d) were calculated only for single-phase
samples with x = 0.6 and x = 0.7 calcined at 1100 and
1200◦C (Table II). These data imply that for the phase
based upon strontium ferrite, the increase in the La con-
tent generates microstrains and decreases particle sizes.
The absence of prominent difference in those parame-

ters between samples calcined at 1100 and 1200◦C in-
dicates that microstrains are not the consequence of the
MT but appear due to differences in Sr/La ionic radii,
presence of oxygen vacancies and/or samples chemical
inhomogeneity. As follows from Table II, the instabil-
ity of phase B (proportional to the microstrains density
�d/d) increases with the La content, and appearance
of the second phase (A) could be accompanied by de-
velopment of the samples microheterogeneity.

The microheterogeneity of samples could be pro-
posed from the MDPD data. Analysis of the MDPD
stoichiograms suggests a complex morphological struc-
ture of those samples particles, namely, formation of
composites (marked as ‘*’ in the Table I). Thus, for the

TABLE I I Particle size (D) and microstrains density (�d/d) for
phase B

Calcination temperature (◦C)

1100 1200

Composition D (Å) 〈�d/d〉 D (Å) 〈�d/d〉

0.6 630 0.0013 630 0.0014
0.7 1400 0.001 1000 0.0011
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Figure 3 Specific catalytic activity versus x for mechanically treated La1−x Srx FeO3−y samples annealed at 1100◦C. Test temperature 250–600◦C.
(a) - CO catalytic oxidation, (b) - CH4 catalytic oxidation.

sample with x = 0.2 calcined at 900◦C, the surface
layer of particles corresponds to La0.82Sr0.28FeO3−y

composition, while the bulk one—to La0.82Sr0.1FeO3−y

(Table I). These data indicate that the surface is enriched
by Sr and depleted with La cations. A similar enrich-
ment of the surface layer of doped lanthanum mangan-
ite or cobaltite prepared by MA route by alkaline-earth
cations was earlier described in our works [16, 17]. This
effect seems to be typical for substituted perovskites
prepared via MA route and implies two-component
composites formation at the MT stage. Probable micro-
heterogeneity in the range of La1−x Srx FeO3−y samples
certainly requires further studies.

3.2. Catalytic activity
For La1−x Srx FeO3−y samples calcined at 1100◦C, the
specific catalytic activity in CO oxidation changes non-
monotonously versus x , especially for high reaction
temperatures (Fig. 3a). There are two maxima of SCA
at x = 0.3 and x = 0.8. So, SCA reaches a maxi-
mum in the range of La substitution by Sr where the
phase transition occurs and samples are comprised of
two coexisting phases (at x = 0.3 and x = 0.8), where
a presence of microheterogeneity could be proposed.
The activity maxima could be assigned to the devel-
opment of the high density of the interphase/intergrain
boundaries.

In CH4 oxidation process, the Sr-substitution in
LaFeO3 leads to decreasing of SCA (Fig. 3b), all substi-
tuted samples show a similar SCA with CO2 selectivity
of 100%. Though any apparent maximum in the depen-
dence of activity versus x is not observed, there is some
curve inflection in the range corresponding to the phase
transition as well. Much weaker effect of the real struc-
ture of samples on the specific activity in methane cat-
alytic oxidation can be assigned either to a higher tem-
perature of experiments (hence, less pronounced role
of weakly bound oxygen stabilized on defect centers),
or by the surface hydroxylation known to occur easily
for those Sr-containing systems under contact with wa-
ter, which rearranges the surface layer decreasing the
amount of active centers—coordinatively unsaturated
surface cations.

Hence, catalytic activity of La1−x Srx FeO3−y samples
in CO and CH4 oxidation changes non-monotonously
with the Sr content. The difference in activity of LaFeO3
and its Sr-substituted derivatives is increased with an
increase of the temperature of the activity tests. Though
in general the activity of Sr-substituted samples is lower
as compared with pure lanthanum ferrite, some doped
samples display a higher or close level of activity. This
difference in activities is more noticeable in CO ox-
idation and less in CH4 oxidation. Since the samples
with x = 0.3 and x = 0.8 are two-phase systems,
their enhanced activity can be tentatively explained by
the specificity of the microstructure, which certainly
requires further studies.

4. Conclusion
The phase composition of La1−x Srx FeO3−y samples
prepared via MA route strongly depends upon the tem-
perature and time of calcination of the activated mix-
ture. For samples calcined at 900◦C there is a broad
two-phase region at x within 0.3–0.8 range. For samples
calcined at 1100◦C only those with x = 0.3, 0.4 and 0.8
are two-phase systems, which agrees with earlier ob-
tained results of Dann et al. [15] for La1−x Srx FeO3−y

system prepared by ceramic method. Hence, the com-
plex phase composition of the La1−x Srx FeO3−y sys-
tem seems to be caused not by the samples prepara-
tion technology but by the dopant content. Catalytic
activity of the La1−x Srx FeO3−y perovskites prepared
via MA route in the reactions of CO and methane oxi-
dations appears to be determined both by the samples
microstructure and the surface layer modification under
the reaction media effect.
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